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1 Introduction
Ionospheric transfer function (ITF) algorithms determine the effects of the ionosphere on an elec-
tromagnetic (EM) radio-frequency (RF) signal as it propagates through. In this report, the Snell’s
law shell (slab) model is outlined.

This algorithm is expressed in the frequency domain. In this way, it is applied as linear time
invariant (LTI) filter function [3].

Signals in this report are assumed to have only a single component (i.e. x, y or z in a rectangular
coordinate system). Multi-component signals can be treated simply by applying the specific ITF
to each component separately.
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2 Snell’s law shell algorithm

Figure 1: Geometry for the Snell’s law shell model. The configuration for a ray that hits the satellite
is shown.

Consider an EM signal originating at a point source and traversing the ionosphere to a detector,
as shown in figure 1. The ionosphere is represented by the blue region and is assumed to be a
homogeneous spherical shell of some arbitrary thickness d, starting at a radius h relative to the
earth’s surface at radius RE, with a constant plasma electron density n0 in a two dimensional
geometry. Electron collisions and ion motions will be ignored in this treatment because ions are
considered to be too massive to contribute to phenomena on the time scale of the RF EM wave,
and wave damping due to electron collisions is assumed insignificant. In rectilinear coordinates,
the signal path is

Pα(0, RE) −→ P0(x0, y0) −→ P1(x1, y1) −→ PS(xS, yS) (1)

or in cylindrical coordinates

Pα(RE, 0) −→ P0(r0, θ0) −→ P1(r1, θ1) −→ PS(rS, θS) (2)
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It travels travels a total distance S = S1 + S2 + S3. Thus, the signal amplitude is decreased
by a factor 1/S. This is not strictly correct, as it does not account for the increase in the flux
tube encompased by the ray as it propagates outward in the r coordinate. However, for the
purposes of this report, this assumption is strong enough to be considered valid for the change in
signal amplitude. The Earth’s magnetic field is assumed to be constant through the shell, with a
magnitude of B0. The angle β between the LOS and B0 is therefore also a constant.

To summarize, the assumptions used above are

• plasma The ionosphere is a shell of constant density plasma with massive ions and collisionless
electrons.

• magnetic field The Earth’s magnetic field is a constant.

• B0 orientation The angle between the Earth’s magnetic field and the line of sight does not
change.

The index of refraction np(ω) in the plasma for either fast (m = −1) or slow (m = +1) root is
given by the Appleton Hartree dispersion relation [1]

np(ω) =
√√√√√√√1− X(ω)

1− 1
2
Y 2(ω) sin2 β

1−X(ω) + m
[

1
4

Y 4 sin4 β

(1−X(ω))2 + Y 2(ω) cos2 β

]1/2 (3)

In the above equation, the plasma and cyclotron frequencies are

ω2
p = n0q

2

ε0me

and ωc = qB0

me

(4)

where ε0,me, and q are the permittivity and free space, electron mass, and electron charge in MKS
units respectively.

In addition, the two dimensional geometry is constructed so that the source is located at point P
at (0, RE) where RE is the Earth’s radius. This configuration is easily realized with the appropriate
coordinate rotation. The ionosphere begins at an altitude h = r0 −RE with a width d.

The signal path (Poynting vector) is refracted according to Snell’s law at the bottom and top
sides of the ionosphere. The Poynting vector direction of propagation can be treated like a ray path
under the geometric optics assumption [4, 1], which is valid for this construction and frequency
range.

Consider an EM signal ray launched at an inclination angle of α at point (0, RE) as shown in
figure 1, which intersects the satellite detector. A straightforward application of geometry along
the radial coordinate to the satellite, and Snell’s law at points P0 (bottom) and P1 (top), will lead
to the geometric expression of the ray’s path.

To begin, S1 is calculated in terms of the underside pierce point

S1 = x0

sinα (5)

The radius from the origin to that point is given by the law of cosines

r2
0 = R2

E + S2
1 − 2RES1 cos (π − α) (6)

= R2
E + S2

1 + 2RES1 cos(α) (7)
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Using equation 5, and r0 = RE + h, in equation 7 gives a quadratic equation for x0 in terms of
α

x0 = −RE

2 sin 2α± 1
2 sin 2α

[
R2
E + h2 + 2REh

cos2 α

]1/2

(8)

Discard the nonphysicsl (negative) root to get

x0 = −RE

2 sin 2α + 1
2 sin 2α

[
R2
E + h2 + 2REh

cos2 α

]1/2

(9)

Next, from the law of sines
RE

sin θi
= r0

sin(π − α) (10)

such that the incident underside pierce point angle is

θi = sin−1
(
RE

r0
sinα

)
(11)

Now, according to Snell’s law at the underside pierce point, P0,

1 · sin θi = np sin θ2 (12)

where the frequency dependence of np is assumed, and n0 = 1. Thus

θ2 = sin−1
(

1
np

sin θi
)

= sin−1
(
Re

r0np
sin θi

)
(13)

Again, from the law of sines,
r1

sin (π − θ2) = r0

sin θ′
2

(14)

so the equation for the angle θ′
2 is

θ
′

2 = sin−1
(
r0

r1
sin θ2

)
(15)

Next, let ∆θ = θ0 − θ1 and consider the triangle given by OP0P1. The sum of the interior
angles is π, so that

θ
′

2 + π − θ2 + ∆θ = π

⇒ θ
′

2 + π − θ2 + θ0 − θ1 = π

⇒ θ1 = θ0 + θ
′

2 − θ2 (16)

and the final form of θ1 is found by using eqns. 13 and 15 in the above result

θ1 = cos−1
(
x0

r0

)
+ sin−1

(
RE

npr1
sinα

)
− sin−1

(
RE

npr0
sinα

)
(17)

Once again, the law of cosines gives

S2 =
(
r2

0 + r2
1 − 2r0r1 cos ∆θ

)1/2
(18)

=
(
r2

0 + r2
1 − 2r0r1 cos (θ0 − θ1)

)1/2
(19)
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At point P1, Snell’s law is
np sin θ′

2 = 1 · sin θ3 (20)

and using equations 11, 13, and 15 in the above equation results in the expression for the angle θ3

θ3 = sin−1
(
RE

r1
sinα

)
(21)

Now, from triangle P1P
′
sPs and the law of sines

S3

sin π/2 = yS − y1

θ
′
3

(22)

note that θ′
3 = θ1 − θ3 and y1 = r1 sin θ1. Using these in the above equation gives the expression

for S3

S3 = yS − r1 sin θ1

sin (θ1 − θ3) (23)

Thus, given the satellite detector coordinates (rS, θS), the ray that intersects the detector
follows segments S1, S2, and S3. These segments are located using the angles and lengths found
in equations 5 to 23. Note that first: all the parameters are functions of the launch angle α, and
second: the detector location can be found in two ways. Consider the x coordinate. It is found
from the detector coordinates

xS = rs cos θS (24)

but can also be found using the derived expressions for the ray path

xS = x1 + ∆x
= r1 cos θ1 + S3 cos θ′

3

= r1 cos θ1 + yS − r1 sin θ1

tan (θ1 − θ3) (25)

Equating the right hand side expressions in equations 24 and 25 results in a conditional equation
that depends on α

rs cos θS ?= r1 cos θ1(α) + yS − r1(α) sin θ1(α)
tan (θ1(α)− θ3(α)) (26)

and will be called the constraint equation from here on. It is solved iteratively, at every frequency
in the signal bandwidth, to find the launch angle α for the ray to intersect the satellite. Note that
this angle may not exist depending on the detector position and parameters of the ionospere shell.

Each frequency component of the signal that intersects the detector will then have its amplitude
decreased by a factor

1
S1 + S2 + S3

The phase of those components is calculated using the phase velocity of the signal on each segment
of the ray. This velocity is the speed of light for segments S1 and S3, while it is given by the phase
velocity of an EM wave in a magnetized plasma with the parameters specified by the ionosphere
shell for segment S2.
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3 solving the constraint equation
There are many methods for iteratively solving the constraint equation, 26. There are some
important points to consider as well. From figure 1 and Snell’s law at a vacuum/plasma interface,
it is clear that any ray path originating from the point (0, RE) will refract in the clockwise direction
at the underside of the ionosphere shell. This means that for the ray to intersect the detector,
the maximum in α is defined as the angle between the y axis and the line of sight to the detector
αSAT , and this would be for no refraction in the ionosphere, so it is an absolute upper limit (see
figure 2).

Figure 2: Geometry for the Snell’s law shell model. Showing the relation between α and αSAT .

The next item to consider is that once θ2 in figure 1 becomes equal to or greater than π/2,
the ray has suffered complete reflection at the vacuum/plasma interface at the underside of the
ionosphere shell. Thus θ2(α) < π/2 for a ray to have a nonzero probability of reaching the detector.
Equation 13 can be used in equation 11 to get

θ2(α) = sin−1
(
RE

npR0
sinα

)
≤ π

2 (27)

or, in terms of the angle α
α ≤ sin−1

(
npR0

RE

)
(28)

Equations 27 and 28 define the upper limit on the angle α, whichever is smaller. The α root

6



that solves the constraint equation can be bracketed in the interval

[0, αSAT ] , αSAT < sin−1
(
npR0

RE

)
[
0, sin−1

(
npR0

RE

)]
, αSAT ≥ sin−1

(
npR0

RE

)
With this knowledge, the bisection algorithm was chosen to solve the constraint equation, 26,

numerically. Thus, at each frequency step in the signal bandwidth, the bisection method is used
to find the existence of a root α. If that root exists, then the ray at that frequency intersects the
satellite detector. The tolerance in finding the root is set to be several orders of magnitude less
than a degree.
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